White Paper: An Efficient APl and Binary Encoding for
Distributed Performance Monitoring

1 Introduction

In order to understand and debug the performance daraderistics of high-performance
distributed applicaions, unts of predsely time-stamped information, o “events’, are
colleded from the distributed componrents of the gplicationitself, the network links, and
the middleware and operating system services used by the gpli cation comporents at
eat hast. In order to reducethe work of analyzing the resulting data, the events are sent
over the network to a central “colledor” daanon. Thus, monitoring results can be
processed and viewed onasingle host without the neal to go ou onto the network and
aggregate the various log fil es. The NetLogger Tod kit (http://www-

didc.Ibl.gov/NetlL ogger/) has been bult aroundthis basic methoddogy of preasiontime-
stamps and automatic aggregation.

For several reasons, minimizing both the number of bytes transmitted onthe network and
the number of CPU cycles used to transmit them can be aucid to the dfedivenessof a
monitoring system. First, the anourt of time used creaing and sending asingle event
limit s the maximum granularity of instrumentation: if it takes N nanoseconds to send an
event, the tightest loopthat can be instrumented with minimal (1%) perturbation d the
applicaionis N*100 nanoseands per iteration. The size of the events when transmitted
over the network to the “colledor” also limits the instrumentation, particularly in data-
intensive gplicaions where bursts of application adivity cause bursts of both application
data and monitoring data. In order to avoid exacebation d predsely the types of network
problems that are being debugged, the bandwidth consumed by the monitoring data
shoud be @ least one, and probably two, arders of magnitude lessthan the gplication’s.
Finally, the number of bytes used for eat event determines the maximum flow of events
that can be processed by asingle wlledor daamon; if the daemonis overrun onareliable
(TCP) conredion, the sender (presumably an appli cation componrent) will eventually

stall while writi ng the monitoring information. Although systems like Kangaroo
(http://www.cs.wisc.eduw/conda/kangarod’) could help with recever-limited systems, this
remains an important limitation, espedally for red-time monitoring and analysis.

Monitoring and appli caion instrumentation cata have two important charaderistics that
corflict with the desire for complete dficiency. First, the types of events are dynamic,
bath within ore sender, and from one sender to the next. Thus the number of bytes for an
event isvariable and, in pradicd terms, the gplicaion canna simply “compilein” the
memory layout of the messages, as would be done for afixed hinary protocol. Second,
the monitoring events themselves may be transient; thisis particularly true for applicaion
instrumentation, where successve debugging iterations may add, remove, or change
many of the events generated by identica runs of the goplicaion. Thisrequires that the
overhead of adding or removing eventsin the code be very low — hopefully no higher
than the language’ s print statement. Unfortunately, these fadors prevented the use of
very powerful and efficient binary /O libraries such as PBIO

(http://www.cc.gatech.edu/'systems/projeds/PBIO/), which require that a separate C
struct be dedared and compil ed into the goplication for ead type of event.

In this white paper, we present a binary encoding for dynamic event types that attemptsto
minimize sender CPU cycles and the amourt of bytes transmitted onthe network. This
encoding has been incorporated into the NetLogger Toadlkit, which provides APIsin eight
languages. C, C++, Fortran77,Fortran90, Java, Perl, Python,and TCL.

2 Terminology

The term “event” has arealy been defined in passng as a unit of predsely time-stamped
information. It shoud be noted that the more ommon definition o “event” asan
indicaion d a change in state does not necessarily apply; the aiteriafor event generation
are gpli cation-dependent.

In this paper, the processthat writes the formatted bytes for an event onto the network
will be cdled the “sender”, and the host that processlives onwill be cdled the “sending
host”. Similarly, the event colledor will be cdled the “recever” andthe event colledor’s
host, the “recaving host”.

3 Event Model

The model of an “event” used hereis very simple: an identifier, atime-stamp, and zero o
more name, type, and value tuples, cdled “fields’. In all cases, the ‘name’ is an array of
octets that is not further interpreted, thus all owing Unicode or numeric values as well as
ASCII strings. The ‘identifier’ provides a sender-unique identifier for the event. The
‘type’ indicaes the data type of the value; so far Integer, Float, and String are supparted.
Zero o more of the fields may be designated as ‘ constants', that is, their values will not
change between events with the same identifier. The order and type of the non-constant
fields also daes not change between events with the same identifier.

In the encoding described below, many size limitations were imposed onthe event
model, mostly for the sake of efficiency. Thiswas done onthe assumptionthat asingle
event will commonly be used to transmit only afew (non-constant) numeric or string
values. In ou experience thisistrue for most appli cation instrumentation and many
types of system monitoring. A summary of the limitationsis snown below.

Event Model Element Limitation
Total size, header + body 128K
Total number of fields 255
Maximum length of any field 255 hytes
Maximum length of any field name 255 kytes
Timestamp 8 hytes

Number of basic datatypes 256

Given these limitations, it would be impasshble to represent even a medium-sized time
serieswithin asingle event; instead ead set of measurements for the time series would
have to be transmitted separately. The tradeoff isthat small events, such as courters,
block identifiers, and “number of bytes o far”, are very efficient.

Note that the event model hereistied to the ideaof a sender and recever, andin
particular the identifier must only be unique to a given sender. This means that if events
from multi ple senders are mixed together, additi onall y identifying information is needed
to dstinguish between their respedive “unique” identifiers.

4 Binary Event Encoding

The event isformatted in two parts: thefirst is cdled the ‘healer’ and the secondis cdled
the ‘body’ . For a given sender, the header iswritten orce per event identifier, and the
body iswritten for every event. Because the number of distinct event identifiersis
expeded to be quite small compared to the total number of events sent, efficient routines
for formatting and sending the body are more important than for the header.

This ®dionwill describe the data type (common to the header and body), header, and
body formats.

4.1 Data Type Formats

There ae only threedatatypes defined so far: INT, FLOAT, and STRING. The
capitalized names will be used to dstinguish these from data types of the same name in
programming languages.

0 INT —A 32-bit signed integer
0 FLOAT —A 4-byte signed floating point number in standard IEEE format.
0 STRING — A one-byte length foll owed by 0 to 255 atets

The datais aways nt in the sender’ s byte order, a style of data transmisson knovn as
“recaever makesright”. This provides maximum efficiency for the sender at the st of
some added complexity (and, to alesser extent, lost efficiency) at the recever.

The first planned extensions to these types are unsigned 4-byte integer and floating point
numbers, bah signed and ursigned 8-byte integer and floating-point numbers, and signed
and ursigned 2-byte integers.

4.2 Header Encoding

The header consists of alength, aminor and mgor version number, an identifier, an
architedure mde, the number of fields and constant fields, alist of field names and types,
andfinaly the constant values for the constant fields. The exad byte layout is shownin
Table 1.

Table 1: Header Encoding

Byte 0 1 2 3 4 5 6 ’{
Length 1 | maor Minor I dentifier
Contents verson | version
Byte 8|9 10 11 .. 1%N 11+N .. 11+M+N
® # of # of Field names Constant values
Q| fields | consts
Contents

Length — The length of the entire header, including the 2 bytes for the length
itself.

Major version— Thefirst bit of the major versionisused as a “header” flag, so it
isalways ‘1’ in the header. The number formed by the other 7 hits darts courting
at 1, with Oreserved for experimental versions.

Minor version— Just an 8-bit (unsigned) number

Identifier — 32-bit unsigned integer

Arch—A codefor (sending) architedure type. Thisis abitwise OR of flags.
Currently the only flag is big/littl e endian.

o Fields— The total number of fields, including constants that will bein this
and every successve body message

of Consts— The number of fields that have mnstant values

Field Names— The name (a STRING) of eadt field. The constant fields are
always listed before the non-constant ones, and in the same order as the Constant
Values.

Constant Vaues— The type and value of ead constant, in the same order as the
Field Names.

The header does nat include atimestamp because the header and the first body are sent at
amost the same time, and the body (seebelow) has a timestamp aready.

4.3 Body Encoding

The body consistsof alength, amajor and minor version, an identifier, atimestamp, and
the values for the non-constant fields dedared in the header.

Table 2: Body Encoding

Byte 0 1 2 3 4 5 6 7
maj or Minor -
Contents Length 0| yersion | verson | dentifier

Byte 8 9 10 11 12 | 13 | 14 | 15

Contents time-stamp, seconds time-stamp, fradional seconds

Byte |16.. 18N

Corntents Field values

0 Length—Thelength of the entire header, including the 2 bytes for the length
itself.

0 Magor verson— Thefirst bit of the mgjor versionis used as a “header” flag, so it

isalways ‘0’ in the body. The number formed by the other 7 bits garts courting at

1, with Oreserved for experimenta versions.

Minor version— Just an 8-bit (unsigned) number

Identifier — 32-bit unsigned integer

Time-stamp, seands — Same & integer part of NTP time-stamp

Time-stamp, fradional secnds— Same & fradional part of NTP time-stamp

Field values — One byte indicating atype foll owed by the value (the length of the

valueis part of the type itself, as thisinformationis not needed for fixed-length

types).
5 Binary Event API

O 0O O0OO0O0

The binary event encoding was implemented in C, and therefore the NetLogger C API
was used as abasis for the API. The main reason that C++ was not chosen isthat C by
virtue of being alowest common denominator is more eaily mapped to avariety of other
languages, al owing APIsin bah script languages (Perl, Python,and TCL) and Fortran.
In addition, the type of low-level coding needed to get maximum speed would probably
use mostly C idioms (memcpy, & operator, *p++, etc) anyways. The aurrent planisto
implement the Java API as a Java Native Interface(INI) wrapper aroundthe C code,
although a “pure” Java APl isaso apaosshility.

Although the general strategy of “wrapping” and wsing a C library does crede
architedure dependence, it has two advantages. First, thereis only one body of code that
defines the encoding, which makes maintenance eaier. Seoond,if dore crredly the
mapping between the languages can take alvantage of the inherent speed of the
underlying C code.

5.1 CAPI

The heat of the C NetLogger API, and the only placewhere significant changes were
made, is the NetLoggerWrite() cdl:

NetLoggerWrite(handle, “event - name”, “Const1=3
Const2=Hello”, “Var1=%d Var2=%f Var3= %s”, v1, v2, v3)

Note that the format string for bath the constants and variables dill | ookslike ULM. In
order to make this cdl efficient, several things happen under the hood

1. The event nameislooked upin aninternal hash table. If that lookupsucceeds,
steps 2 and 3are skipped.

2. A new message objed is all ocated, and the constant values are mpied into it.
Then the format string is parsed and spaceis all ocated for all the variable values
(255 bytesis alocaed for ead string), and their types are recorded as sSmple one-
byte mdes.

3. Thismessage objed is put into the internal hash table using the event name & a
key.

4. Thevauesare mpied into the existing message objed

5. Themessage objed is‘seridized into an ouput buffer

The result of this procedure isthat on successve cdlsto NetLoggerWrite, the constant
and variable format strings do nd nead to be parsed. In addition, al memory is al ocaed
onthefirst cdl, and subsequent cdls only need to copy from the user’ s valuesinto the
waiting space

5.2 Other languages

Note: This dion isnot complete, pending the completion of the binary APIs in the
“other” languages.

Because the C API usesthe varargs library to simulate what in most high-level languages
would be dore with atemporary list ojed, the mapping from the script languages, and
particularly Java and (nonvarargs) C++, will require some deverness The aurrent
approach of passng a pre-formatted string will not work well, e.g. in Pythort

NetLogger.write(“event - hame”,
“Constl=3 Const2=Hello Varl=%d Var2=%f Var3=%s" %
(vi,v2,v3))

Instead, something closer to the C API will have to be used, with alanguage-spedfic
construct repladng the varargs. Code in the C library will trandate dl the language-
spedfic C mappings to a ammon routine.

The result from thiswork shoud be asignificantly faster APl in amost al | anguages
(Javabeing the passble exception).

6 Performance Comparisons

Note: This dion isnot complete, pending the completion of the binary APIs in the
“other” languages.

This dion compares the performance of different binary API’s, bath with ead ather
and with the ULM encoding.

7 Conclusions

This white paper presented a binary encoding for logging events over the network. Basic
design choices were discussed briefly, and some implementation cetail s related to the
APIswere discussed. Efficiency, bah of the mde itself and d the programmer time
needed to creade and maintain it, were the guiding design principles. Dueto this
approadh, many valuable types of data, such as multi-dimensional arrays, structs, and
long strings, do na have asimple or natural mapping to this encoding. However, in our
experiencethe vast mgjority of applicalion and system monitoring can be eaily
trandated to arelatively small (lessthan 30 number of simple values for ead time-
stamp. Whether thisistrue in general remainsto be seen, but at any rate the binary
encoding presented here shoud provide agood lasis for evaluating other posgble binary
encodings of event information.

